Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Heliyon ; 10(7): e29087, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601582

RESUMO

Effective and maximum utilization of waste heat from industrial processes and fossil plants can improve thermodynamic performance and declined the environmental impacts of waste heat discharge to the atmosphere. Here, the multi-aspect assessment and optimization of a novel cogeneration power and cooling load cycle (CPCC) is developed. The considered cogeneration process is designed under a three-level waste heat recovery process consisting of an ORC (organic Rankine cycle) unit and an ejection-based refrigeration process. Thermodynamic performance, cost feasibility and environmental assessments of the suggested process have been comprehensively evaluated and discussed. A two-objective optimization is developed to minimize the total cost and maximize the exergy efficiency. Moreover, the comprehensive CPCC behavior is compared with a reference system (a single-level recovery/ORC process and a compression-based refrigeration process). The performance of the considered CPCC is also examined under various environmentally compatible refrigerants. The environmental analysis is based on two indicators (i.e., life cycle-climate performance and total equivalent-warming impacts). Due to the multi-level recovery of waste heat, the environmental impacts of emitting waste heat into the environment are significantly reduced. The outcomes revealed that the R1234/yf is considered as the most suitable refrigerant that can causes to optimum achievements for both systems. The exergetic performance is improved by about 10.3% compared to that reference system, while the exergy destruction and total annual cost of the CPCC, respectively, are reduced by approximately 7.4% and 21.6% compared to the reference cycle. It was also found that about 11,640 tons of carbon dioxide can be reduced by using the ejector in the refrigeration process.

2.
Transfus Med Hemother ; 51(2): 84-93, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584692

RESUMO

Introduction: Refrigeration of platelets is considered to provide advantages in therapy of acute hemorrhage due to increased platelet responsiveness. The alleviation of inhibitory signaling caused by cold temperature (CT) has been identified as an important mechanism contributing to enhanced platelet reactivity, detectable in freshly prepared platelets within 1 h of cold storage. The aim of this study was to confirm the effects of short-term refrigeration in platelets from apheresis-derived platelet concentrates (APC). Methods: APC were stored under standardized conditions for 1 day or for 2 days at room temperature and then refrigerated for 1 h, followed by sampling of platelets for analysis. Platelet reactivity was measured by aggregation studies using threshold concentrations of different agonists and by detection of fibrinogen binding using flow cytometry. The exploration of inhibitory signaling comprised the detection of VASP phosphorylation using flow cytometry or Western blot and the measurement of cyclic nucleotide levels. Results: Aggregation responses induced with ADP, collagen, or thrombin receptor-activating peptide-6 (TRAP-6) were increased in APC after cold storage for 1 h, associated with elevated TRAP-6-induced fibrinogen binding. VASP phosphorylation levels were decreased after cold exposition, detectable in 1-day- and 2-day-stored APC with flow cytometry, and in 2-day-stored APC with Western blot technique. Induced cGMP levels were lower after storage at CT in APC on day 1 and on day 2, whereas cAMP levels were reduced on 2-day-stored APC. Conclusion: Short-term refrigeration for 1 h is sufficient to induce an attenuation of inhibitory signaling, accompanied with increased aggregation responses in APC stored for up to 2 days. The "on demand" refrigeration of PC may be a reasonable approach for the preparation of platelets with enhanced responsiveness to treat patients with hemorrhage more effectively, which should be further addressed in consecutive studies.

3.
Adv Mater ; : e2402046, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639483

RESUMO

Magnetic refrigeration technology can achieve higher energy efficiency based on the magnetocaloric effect. However, the practical application of MCE materials is hindered by their poor mechanical properties, making them challenging to process into devices. Conventional strengthening strategies usually lead to a trade-off with refrigeration capacity reduction. Here, a novel design is presented to overcome this dilemma by forming dual-phase alloys through in-situ precipitation of a tough magnetic refrigeration phase within an intermetallic compound with excellent MCE. In the alloy 87.5Gd-12.5Co, incorporating the interconnected tough phase Gd contributes to enhanced strength (≈ 505 MPa) with good ductility (≈ 9.2%). The strengthening phase Gd simultaneously exhibits excellent MCE, enabling the alloy to achieve a peak refrigeration capacity of 720 J∙kg-1. Moreover, the alloy shows low thermal expansion induced by the synergistic effect of the two phases. It is beneficial for maintaining structural stability during heat exchange in magnetic refrigeration. The coupling interaction between the two magnetic phases can broaden the refrigeration temperature range and reduce hysteresis. This study guides the development of new high-performance materials with an excellent combination of mechanical and magnetic refrigeration properties as needed for gas liquefaction and refrigerators. This article is protected by copyright. All rights reserved.

4.
Food Chem ; 450: 139371, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640533

RESUMO

The structural features of precooked noodles during refrigerated storage were non-destructively characterized using hyperspectral imaging (HSI) technology along with conventional analytical methods. The precooked noodles displayed a more rigid texture and restricted water mobility over the storage period, derived from the recrystallization of starch. Dimensionality reduction techniques revealed robust correlations between the storage duration and HSI absorbance of the noodles, and from their loading plots, the specific peaks of the noodles related to their structural changes were identified at wavelengths of around 1160 and 1400 nm. The strong relationships between the HSI results of the noodles and their storage period/texture were confirmed by training four machine learning models on the HSI data. In particular, the support vector algorithm displayed the best prediction performance for classifying precooked noodles by storage period (98.3% accuracy) and for predicting the noodle texture (R2 = 0.914).

5.
Materials (Basel) ; 17(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38541470

RESUMO

The microstructure, corrosion resistance, and phase-transition process of micro-arc oxidation (MAO) coatings prepared on LaFe11.6Si1.4 alloy surfaces in different electrolyte systems were systematically investigated. Research has demonstrated that various electrolyte systems do not alter the main components of the coatings. However, the synergistic action of Na2CO3 and Na2B4O7 more effectively modulated the ionization and chemical reactions of the MAO process and accelerated the formation of α-Al2O3. Moreover, the addition of Na2CO3 and Na2B4O7 improved the micromorphology of the coating, resulting in a uniform coating thickness and good bonding with the LaFe11.6Si1.4 substrate. The dynamic potential polarization analysis was performed in a three-electrode system consisting of a LaFe11.6Si1.4 working electrode, a saturated calomel reference electrode, and a platinum auxiliary electrode. The results showed that the self-corrosion potential of the LaFe11.6Si1.4 alloy without surface treatment was -0.68 V, with a current density of 8.96 × 10-6 A/cm2. In contrast, the presence of a micro-arc electrolytic oxidation coating significantly improved the corrosion resistance of the LaFe11.6Si1.4 substrate, where the minimum corrosion current density was 1.32 × 10-7 A/cm2 and the corrosion potential was -0.50 V. Similarly, after optimizing the MAO electrolyte with Na2CO3 and Na2B4O7, the corrosion resistance of the material further improved. Simultaneously, the effect of the coatings on the order of the phase transition, latent heat, and temperature is negligible. Therefore, micro-arc oxidation technology based on the in situ growth coating of the material surface effectively improves the working life and stability of La(Fe, Si)13 materials in the refrigeration cycle, which is an excellent alternative as a protection technology to promote the practical process of magnetic refrigeration technology.

6.
Food Res Int ; 182: 114064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519157

RESUMO

Bacillus subtilis spores are important food spoilage agents and are occasionally involved in food poisoning. In foods that are not processed with intense heat, such bacterial spores are controlled by a combination of different hurdles, such as refrigeration, acidification, and low water activity (aw), which inhibit or delay germination and/or growth. Sporulation temperature has long been regarded as a relevant factor for the assessment of germination in chemically defined media, but little is known about its impact on food preservation environments. In this study, we compared germination dynamics of B. subtilis spores produced at optimal temperature (37 °C) with others incubated at suboptimal (20 °C) and supraoptimal (43 °C) temperatures in a variety of nutrients (rich-growth medium, L-alanine, L-valine, and AGFK) under optimal conditions as well as under food-related stresses (low aw, pH, and temperature). Spores produced at 20 °C had a lower germination rate and efficiency than those incubated at 37 °C in all the nutrients, while those sporulated at 43 °C displayed a higher germination rate and/or efficiency in response to rich-growth medium and mostly to L-alanine and AGFK under optimal environmental conditions. However, differences in germination induced by changes in sporulation temperature decreased when spores were activated by heat, mainly due to the greater benefit of heat for spores produced at 20 °C and 37 °C than at 43 °C, especially in AGFK. Non-heat-activated spores produced at 43 °C still displayed superior germination fitness under certain stresses that had considerably impaired the germination of the other two populations, such as reduced temperature and aw. Moreover, they presented lower temperature and pH boundaries for the inhibition of germination in rich-growth medium, while requiring a higher NaCl concentration threshold compared to spores obtained at optimal and suboptimal temperature. Sporulation temperature is therefore a relevant source of variability in spore germination that should be taken into account for the accurate prediction of spore behaviour under variable food preservation conditions with the aim of improving food safety and stability.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Temperatura , Temperatura Alta , Meios de Cultura , Alanina
7.
Materials (Basel) ; 17(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399136

RESUMO

Seeking novel high-performance elastocaloric materials with low critical stress plays a crucial role in advancing the development of elastocaloric refrigeration technology. Here, as a first attempt, the elastocaloric effect of TiZrNbAl shape memory alloy at both room temperature and finite temperatures ranging from 245 K to 405 K, is studied systematically. Composition optimization shows that Ti-19Zr-14Nb-1Al (at.%), possessing excellent room-temperature superelasticity with a critical stress of around 100 MPa and a small stress hysteresis of around 70 MPa and outstanding fracture resistance with a compressive strain of 20% and stress of 1.7 GPa, demonstrates a substantial advantage as an elastocaloric refrigerant. At room temperature, a large adiabatic temperature change (ΔTad) of -6.7 K is detected, which is comparable to the highest value reported in the Ti-based alloys. A high elastocaloric cyclic stability, with almost no degradation of ΔTad after 4000 cycles, is observed. Furthermore, the sizeable elastocaloric effect can be steadily expanded from 255 K to 395 K with a temperature window of as large as 140 K. A maximum ΔTad of -7.9 K appears at 355 K. The present work demonstrates a promising potential of TiZrNbAl as a low critical stress and low hysteresis elastocaloric refrigerant.

8.
ACS Nano ; 18(8): 6438-6444, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363716

RESUMO

Lead halide perovskite nanocrystals, such as CsPbBr3, exhibit efficient photoluminescence (PL) up-conversion, also referred to as anti-Stokes photoluminescence (ASPL). This is a phenomenon where irradiating nanocrystals up to 100 meV below gap results in higher energy band edge emission. Most surprising is that ASPL efficiencies approach unity and involve single-photon interactions with multiple phonons. This is unexpected given the statistically disfavored nature of multiple-phonon absorption. Here, we report and rationalize near-unity anti-Stokes photoluminescence efficiencies in CsPbBr3 nanocrystals and attribute them to resonant multiple-phonon absorption by polarons. The theory explains paradoxically large efficiencies for intrinsically disfavored, multiple-phonon-assisted ASPL in nanocrystals. Moreover, the developed microscopic mechanism has immediate and important implications for applications of ASPL toward condensed phase optical refrigeration.

9.
Adv Sci (Weinh) ; 11(11): e2308623, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225694

RESUMO

The green water-based adsorption refrigeration is considered as a promising strategy to realize near-zero-carbon cooling applications. Although many metal-organic frameworks (MOFs) have been developed as water adsorbents, their cooling performance are commonly limited by the insufficient water uptakes below P/P0 = 0.2. Herein, the development of multivariate MOFs (MTV-MOFs) is reported to highly modulate and boost the low-pressure water uptake for improving coefficient of performance (COP) for refrigeration. Through ligand exchange in the pristine MIL-125-NH2 , a series of MTV-MOFs with bare nitrogen sites are designed and synthesized. The resulting MIL-125-NH2 /MD-5% exhibits the significantly improved water uptake of 0.39 g g-1 at 298 K and P/P0 = 0.2, which is three times higher than MIL-125-NH2 (0.12 g g-1 ) and comparable to some benchmark materials including KMF-1 (0.4 g g-1 ) and MIP-200 (0.36 g g-1 ). Combined with its low-temperature regeneration, fast sorption kinetics and high stability, MIL-125-NH2 /MD-5% achieves one of the highest COP values (0.8) and working capacities (0.24 g g-1 ) for refrig-2 under an ultralow-driven temperature of 65 °C, which are higher than some best-performing MOFs such as MIP-200 (0.74 and 0.11 g g-1 ) and KMF-2 (0.62 and 0.16 g g-1 ), making it among the best adsorbents for efficient ultralow-temperature-driven refrigeration.

10.
Int J Food Sci Nutr ; : 1-9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38230429

RESUMO

Knowing the true levels of nutrients and dietary bioactives in fruit juices at the point of consumption is key to properly understand their potential health benefits. The objective was to characterise the vitamin C and flavanone content in commercial orange juices consumed in Europe, compared with fresh-squeezed juices. Commercial juices were a rich source of vitamin C (>30% of the Nutrient Reference Value). Vitamin C in fresh-squeezed juices, at the end of their shelf-life, remained 33% higher than the levels found in the commercial juices. Flavanones had similar values from both commercial and fresh juices, except for fresh samples stored for 48 h, where fresh juices had higher values (22.36 mg/100 mL). Thus, orange juices preserve their bioactive compounds during storage, with very little influence of the brand, country, industrial process or storage conditions. Main bioactive compounds in commercial juices are present at nutritionally significant levels to the freshly-squeezed ones.

11.
Chemistry ; 30(3): e202303048, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37932887

RESUMO

Magnetic refrigeration technology based on Gd-based paramagnets is expected to be applied to refrigeration in extremely low temperatures, thereby reducing the consumption of liquid helium. Here, we obtained a compound, Gd3 TeBO9 with high Gd3+ concentration through element substitution. The Gd3+ concentration in this compound is as high as 2.4×1024  ions/kg, which is 33 % higher than the commercial Gd3 Ga5 O12 (GGG), and further magnetic tests show that Gd3 TeBO9 has a large magnetic entropy change (57.44 J/(kg K) and 408 mJ/(cm3 K) at 2.6 K and 7 T), which is 1.5 times that of GGG, implying the possibility of its further development as an potential magnetocaloric material.

12.
ISA Trans ; 144: 490-500, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923629

RESUMO

The paper proposes a data-driven fault-tolerant control (FTC) strategy to construct and accommodate the bias on ambient temperature measurements in supermarket refrigeration systems. The bias, which is caused by direct or indirect exposure of the sensor to the sun, can have a significant impact on the refrigeration system's energy consumption. Based on analysis of the real data a comprehensive model of the bias is developed and then used to generate realistic scenarios for testing the proposed FTC method. The FTC method uses a feed forward Neural Network (NN) as a black box model. The model is trained by active injection of perturbation signals during the night operations. During the Monte-Carlo tests, the strategy was implemented in a Plug & Play manner, demonstrating that substantial energy savings can be achieved during summer periods.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38048596

RESUMO

An outstanding challenge for eco-friendly ferroelectric (FE) refrigeration is to achieve a large adiabatic temperature change within a broad temperature range originating from the electrocaloric (EC) effect, which is expected to be realized in antiferroelectric (AFE) materials owing to the large entropy change during electric field and thermally induced phase transition. In this work, a large EC response over a wide response temperature range can be achieved slightly above room temperature via designing the phase transition of NaNbO3. An irreversible to reversible AFE-FE phase transition on heating induced by the introduction of CaZrO3 into NaNbO3 plays a key role in the optimized electrocaloric refrigeration. Accordingly, accompanying the local structure transformation corresponding to the B-site ions, the transition temperature between the square polarization-electric field (P-E) hysteresis loop (the irreversible AFE-FE phase transition induced by the electric field) and the repeatable double P-E hysteresis loop (the electric field induced reversible AFE-FE phase transition) was tailored to around room temperature, in favor of extending large entropy change to the wide temperature range. This work provides an efficient approach to designing lead-free EC materials with excellent EC performance, promoting the advancement of environmentally friendly solid-state cooling technology.

14.
Food Sci Nutr ; 11(11): 7430-7440, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970374

RESUMO

The effects of seaweed (Padina tetrastromatica, Sargassum natans, and Sargassum fluitans) ethanolic extracts on the quality and shelf life extension of Nile tilapia (Oreochromis niloticus) fillets were investigated during refrigerated storage for 20 days. Each of the seaweed ethanolic extracts solution (2%, w/v) was used for dipping the fish fillets for 10 min at 4°C. The control and seaweed extract-treated fillets were stored at 4 ± 1°C in air-tight polyethylene bags, and chemical, bacteriological, and sensory evaluation were performed at every 4 days' intervals. During the storage period, P. tetrastromatica extract significantly (p < .05) reduced the increment of pH, peroxide value, thiobarbituric acid reactive substances, and total volatile basic nitrogen values in Nile tilapia fillets compared to other seaweed extracts-treated and untreated fillets. The maximal total viable count of control, P. tetrastromatica, S. natans, and S. fluitans extracts-treated fillets was 6.53, 7.11, 6.75, and 7.10 log CFU/g at the 8th, 20th, 12th, and 16th days of storage, respectively. The total psychrotrophic count of control and seaweed extracts-treated fillets was also significantly increased (p < .05) throughout the storage period. The P. tetrastromatica extracts-treated fillets showed better sensory characteristics than other seaweed extracts-treated and control fillets. Results of this study suggest that ethanolic extracts (2%, w/v) of P. tetrastromatica extend the shelf life for 12 days longer than the control fillets in refrigerated conditions.

15.
Beilstein J Nanotechnol ; 14: 1041-1058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941774

RESUMO

In this study, the use of nanolubricants containing Al2O3, graphene, and carbon nanotubes (CNTs) at different mass fractions in a refrigeration compressor was experimentally investigated. The required electrical power of the compressor was measured to determine the effect of the use of nanolubricants. Nanoparticles used in the preparation of nanolubricants were gradually added to the lubricant to determine the optimum nanoparticle mass fraction for each nanoparticle type. Thus, it was found that the compressor operated safely and efficiently with nanolubricants. Furthermore, the optimum mass fractions were determined to be 0.750% for Al2O3, 0.250% for graphene, and 0.250% for CNTs for operating conditions of this study. As a result, the required electrical power of the compressor decreased by 6.26, 6.82, and 5.55% with the addition of Al2O3, graphene, and CNT nanoparticles at optimum mass fractions of 0.750, 0.250, and 0.250% to the lubricant, respectively, compared to the compressor using pure oil. Moreover, density and dynamic viscosity of the nanolubricant samples used in the experiments were also measured, and their kinematic viscosity, which is an important parameter for lubricants, was calculated. It was determined that the kinematic viscosity continuously increased with increasing nanoparticle fraction. In conclusion, nanolubricants containing nanoparticles above the optimum mass fraction increase the required electrical power of the compressor. It is concluded that nanoparticle fractions should not be used above the optimum value in nanolubricant applications.

16.
Biopreserv Biobank ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943629

RESUMO

Objectives: The aim of this study was to determine the cause of elevated serum potassium levels when blood collection tubes containing separating gel are stored under refrigeration. Methods: Fifty-seven hospitalized patients and 11 healthy volunteers were recruited. Venous blood samples were obtained using Insepac II, Neotube, and Venoject® II, without anticoagulant. After centrifugation under different processing conditions, the capped tubes were stored at 4°C without aliquoting, and serum potassium levels were measured for up to 14 days. Correlation between the increase in potassium levels and blood cell counts was assessed. Furthermore, serum was replaced with a saline solution and potassium levels were determined after refrigeration. Results: Refrigerated samples stored in Insepac II tubes had significantly higher serum potassium levels on day 14 than on the day of blood collection. The increase in serum potassium levels was positively correlated with the number of red blood cells, but not white blood cells and platelets in venous blood. Furthermore, potassium levels were elevated when serum was replaced with a saline solution. Using Venoject II, which has a larger tube diameter and thicker separating gel than those of Insepac II and Neotube, did not increase serum potassium levels after storage. Increase in the serum potassium level was markedly suppressed by centrifugation at 2330 g for 15 minutes relative to other processing conditions. Conclusions: Potassium levels increase when serum is refrigerated in collection tubes containing separating gel. This can be attributed to contamination of the serum layer by blood cell components beyond the separating gel.

17.
Foods ; 12(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37893775

RESUMO

Salmorejo is a tomato-oil cold puree commercialized as a "fresh-like" product requiring mild pasteurisation and chill storage to reach a suitable shelf lifetime. The objective of this study was to study the factors which limit the shelf life of salmorejo pasteurised via conventional or radiofrequency continuous heating, packed in high-density polyethylene bottles, and kept at refrigeration. The pasteurised-chilled salmorejo reached a long shelf life (4 months) compared to that of pasteurised tomato juices or purees. Mesophilic and pathogenic bacteria were easily inhibited in this acidic product. Salmorejo mainly showed oxidative and subsequent sensory changes. Initial enzyme oxidation was associated with some adverse effects (loss of vitamin C and lipid oxidation) at the first month, although there were no sensory implications. Salmorejo remained stable at the physicochemical and sensory levels for the following 3 months, though colour and viscosity changes could be measured with instruments. Between the fourth and fifth month, salmorejo showed clear signs of deterioration, including changes in appearance (slight browning and loss of smooth surface), odour/flavour (loss of freshness and homogenisation), and consistency (thinning trend). The shelf life of salmorejo is limited by long-term oxidative deterioration and their sensory implications.

18.
Insect Sci ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822224

RESUMO

Osmia solitary bees are important pollinators of various crops worldwide. Refrigeration has been widely used to synchronize the emergence time of Osmia species from cocoons with the blooming time of different crops, but the fitness of Osmia after refrigeration remains unknown. Here, the effects of long-term refrigeration at 0 °C on the vitality, flight ability, and metabolism of Osmia excavata, which is known as the "king of pollination" in China, were studied. The survival rate (>90% before 120 d), weight loss rate (<15% after 170 d), and mean flight speed of O. excavata were not greatly affected after long-term refrigeration. The content of fats, which have antifreeze and energy storage properties, was not significantly altered in O. excavata before 130 d of refrigeration, which might explain why the survival rates and flight speed of O. excavata remained high after long-term refrigeration. However, the flight duration and distance decreased significantly (P < 0.05), and both were positively correlated with the reduced trehalose levels in O. excavata (r = [+0.69] - [+0.71]; P < 0.05). Overall, these findings indicate that the pollination potential of O. excavata for various crops with different flowering periods is high after long-term refrigeration; however, long-term refrigeration may decrease pollination efficiency. Our findings highlight new research directions that could improve the ecological service function of refrigerated O. excavata.

19.
Food Res Int ; 172: 113101, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689865

RESUMO

Cheese production is an applied biotechnology whose proper outcome relies strictly on the complex interactive dynamics which unfold within defined microbial groups. These may start being active from the collection of milk and continue up to its final stages of maturation. One of the critical parameters playing a major role is the milk refrigeration temperature before pasteurization as it can affect the proportion of psychrotrophic taxa abundance in the total milk bacterial population. While a standard temperature of 4 °C is the common choice, due to its general growth control effect, it does have a potential drawback. This is due to the fact that some cold-tolerant genera present a proteolytic activity with uncompleted proliferation, which could negatively affect curd clotting and regular cheese maturation. Moreover, accidental thermal variations of milk before cheese-making, in a plus or minus direction, can occur both at farm collection sites and during transfer to dairy plant. This present research, directly commissioned by a major fresh cheese-producing company, includes an in-factory trial. In this trial, a gradient of temperatures from 4 °C to 13 °C, which were subsequently reversed, was purposely adopted to: (a) verify sensory alterations in the resulting product at different maturation stages, and, (b) analyze, in parallel, using DNA extraction and 16S-metabarcoding sequencing from the same samples, the presence, abundance and corresponding taxonomical identity of all the bacteria featured in communities found in milk and cheese samples. Overall, 1,714 different variants were detected and sorted into 394 identified taxa. Significant bacterial community shifts in cheese were observed in response to milk refrigeration temperature and subsequently associated with samples having altered scores in sensory panel tests. In particular, proteolytic psychrotrophes were outcompeted by Enterobacteriales and by other taxa at the peak temperature of 13 °C, but aggressively increased in the descent phases, upon the cooling down of milk to values of 7 °C. Relevant clues have been collected for better anticipation of thermal abuse effects or parameter variations allowing for improved handling of technical processing conditions by the cheese manufacturing industry.


Assuntos
Queijo , Microbiota , Animais , Temperatura , Leite , Temperatura Baixa
20.
Foods ; 12(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37685237

RESUMO

Campylobacter jejuni is one of the leading causes of acute diarrhea in the United States. Despite being a microaerophilic pathogen, C. jejuni continues to endure within the domain of food production, especially in poultry processing. Recent research on aerotolerance indicates that close monitoring of this pathogen is necessary. A total of 40 C. jejuni isolates previously obtained from commercial broiler processing plants were analyzed for aerotolerance and genetic diversity. In addition, the effect of aerotolerance and storage time (days) on the survival of C. jejuni on broiler drumsticks at refrigeration (4 °C) and freezing conditions (-20 °C) was also evaluated. Out of 40 isolates, 25 (62.5%) were aero-sensitive (AS), 10 (25%) were intermediately aerotolerant (IAT), and 5 (12.5%) were hyper aerotolerant (HAT). The isolates belonged to four clonal complexes (CCs) and six sequence types, with the majority of isolates assigned to the CC-353 clonal complex. C. jejuni counts were reduced by 0.40 log CFU/g after 7 days at 4 °C and by 1.50 log CFU/g after 14 days at -20 °C, respectively, irrespective of aerotolerance (p < 0.001). At both refrigeration (p < 0.013) and freezing (p < 0.001), HAT showed greater reductions as compared to AS and IAT. These findings suggest that both refrigeration and freezing reduce C. jejuni counts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...